Abstract
Resistive random-access memories (RRAM)s are considered a promising candidate for neuromorphic circuits and systems. In this letter, we investigate using TiO 2 RRAMs to solve blind source separation problem through independent component analysis (ICA) for the first time. ICA has numerous uses including feature extraction. We deploy a local, unsupervised learning algorithm (error-gated Hebbian rule) to extract the independent components. The online evaluation of the weights during the training is studied taking into consideration the asymmetric nonlinear weight update behavior. The effects of the device variability are considered in the results. Finally, an example of de-mixing two Laplacian signals is given to demonstrate the efficacy of the approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Transactions on Nanotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.