Abstract

The presence of clustered microcalcifications is one of the earliest signs in breast cancer detection. Although there exist many studies broaching this problem, most of them are nonreproducible due to the use of proprietary image datasets. We use a known subset of the currently largest publicly available mammography database, the Digital Database for Screening Mammography (DDSM), to develop a computer-aided detection system that outperforms the current reproducible studies on the same mammogram set. This proposal is mainly based on the use of extracted image features obtained by independent component analysis, but we also study the inclusion of the patient's age as a nonimage feature which requires no human expertise. Our system achieves an average of 2.55 false positives per image at a sensitivity of 81.8% and 4.45 at a sensitivity of 91.8% in diagnosing the BCRP_CALC_1 subset of DDSM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.