Abstract

Gene expression in bacteria is regulated by multiple transcription factors. Clarifying the regulation mechanism of gene expression is necessary to understand bacterial physiological activities. To further understand the structure of the transcriptional regulatory network of Corynebacterium glutamicum, we applied independent component analysis, an unsupervised machine learning algorithm, to the high-quality C. glutamicum gene expression profile which includes 263 samples from 29 independent projects. We obtained 87 robust independent regulatory modules (iModulons). These iModulons explain 76.7% of the variance in the expression profile and constitute the quantitative transcriptional regulatory network of C. glutamicum. By analyzing the constituent genes in iModulons, we identified potential targets for 20 transcription factors. We also captured the changes in iModulon activities under different growth rates and dissolved oxygen concentrations, demonstrating the ability of iModulons to comprehensively interpret transcriptional responses to environmental changes. In summary, this study provides a genome-scale quantitative transcriptional regulatory network for C. glutamicum and informs future research on complex changes in the transcriptome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.