Abstract
EEG-fMRI in epileptic patients is commonly analyzed using the general linear model (GLM), which assumes a known hemodynamic response function (HRF) to epileptic spikes in the EEG. In contrast, independent component analysis (ICA) can extract Blood-Oxygenation Level Dependent (BOLD) responses without imposing constraints on the HRF. This technique was evaluated on data generated by superimposing artificial responses on real background fMRI signals. Simulations were run using a wide range of EEG spiking rates, HRF amplitudes, and activation regions. The data were decomposed by spatial ICA into independent components. A deconvolution method then identified component time courses significantly related to the simulated spikes, without constraining the shape of the HRF. Components matching the simulated activation regions ("concordant components") were found in 84.4% of simulations, while components at discordant locations were found in 12.2% of simulations. These false activations were often related to large artifacts that coincidentally occurred simultaneously with some of the random simulated spikes. The performance of the method depended closely on the simulation parameters; when the number of spikes was low, concordant components could only be identified when HRF amplitudes were large. Although ICA did not depend on the shape of the HRF, data processed with the GLM did not reveal the appropriate activation region when the HRF varied slightly from the canonical shape used in the model. ICA may thus be able to extract BOLD responses from EEG-fMRI data in epileptic patients, in a way that is robust to uncertainty and variability in the shape of the HRF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.