Abstract
Abstract Among the various biometric systems, face recognition is an important area of research due to its applications in Human Computer Interaction, biometrics and security. It is one of the most popular research areas in the field of computer vision and pattern recognition. This paper addresses the use of Independent Component Analysis (ICA) for recognizing human faces. It is implemented using InfoMax algorithm. Face recognition performance is evaluated using Architecture-I which treats images as random variables and pixels as outcomes. We are observing the sensitivity of ICA to the dimensionality of final subspace. Experiments are carried out on ORL face database which consists of 400 face images. We presented recognition rate of the system corresponding to number of independent basis vectors along with the energy retained in number of eigenvectors of underlying Principal Component Analysis (PCA) subspace. Our results show that the performance of face recognition using ICA increases with the number of statistically independent basis vectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.