Abstract

The normal compositional model (NCM) is a well-known and powerful model in hyperspectral unmixing which represents endmembers as independent Gaussian vectors to capture endmember variability. However, the assumption of independent endmembers diminishes the model accuracy because the high degree of correlation between endmembers of a scene and identical sources of variability demonstrate that the endmembers are dependent. This paper proposes a new hyperspectral unmixing algorithm which represents endmembers using dependent Gaussian vectors to estimate abundance fractions. To overcome the higher complexity caused by dependence assumption, this algorithm introduces new independent Gaussian vectors named Base Vectors to represent different endmembers by a weighted linear combination. Also, the proposed unmixing algorithm uses maximum likelihood method to estimate weight coefficients of Base Vectors which are used to represent mixed pixel. Finally, abundance estimation can be done using the new representation for endmembers and mixed pixel. The proposed algorithm is evaluated and compared with other state-of-the-art unmixing algorithms using simulated and real hyperspectral images. Experimental results demonstrate that the proposed unmixing algorithm can unmix pixels composed of correlated endmembers in hyperspectral images in the presence of spectral variability more accurately than previous methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.