Abstract

The prediction for information diffusion on social networks has great practical significance in marketing and public opinion control. It aims to predict the individuals who will potentially repost the message on the social network. One type of method is based on demographics, complex networks, and other prior knowledge to establish an interpretable model to simulate and predict the propagation process, while the other type of method is completely data-driven and maps the nodes to a latent space for propagation prediction. Existing latent space design and embedding methods lack consideration for the intervention among users. In this paper, we propose an independent asymmetric embedding method to embed each individual into one latent influence space and multiple latent susceptibility spaces. Based on the similarity between information diffusion and heat diffusion phenomenon, the heat diffusion kernel is exploited in our model and establishes the embedding rules. Furthermore, our method captures the co-occurrence regulation of user combinations in cascades to improve the calculating effectiveness. The results of extensive experiments conducted on real-world datasets verify both the predictive accuracy and cost-effectiveness of our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.