Abstract

The n-ary first and second recursion theorems formalize two distinct, yet similar, notions of self-reference. Roughly, the n-ary first recursion theorem says that, for any n algorithmic tasks (of an appropriate type), there exist n partial computable functions that use their own graphs in the manner prescribed by those tasks; the n-ary second recursion theorem says that, for any n algorithmic tasks (of an appropriate type), there exist n programs that use their own source code in the manner prescribed by those tasks.Results include the following. The constructive 1-ary form of the first recursion theorem is independent of either 1-ary form of the second recursion theorem. The constructive 1-ary form of the first recursion theorem does not imply the constructive 2-ary form; however, the constructive 2-ary form does imply the constructive n-ary form, for each n ≥ 1. For each n ≥ 1, the not-necessarily-constructive n-ary form of the second recursion theorem does not imply the presence of the (n + 1)-ary form.KeywordsProgramming LanguageComputable OperatorTransitive ClosureRecursive EquationEntailment RelaThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.