Abstract
Let $G$ be an acylic directed graph. For each vertex $g \in G$, we define an involution on the independent sets of $G$. We call these involutions flips, and use them to define a new partial order on independent sets of $G$. Trim lattices generalize distributive lattices by removing the graded hypothesis: a graded trim lattice is a distributive lattice, and every distributive lattice is trim. Our independence posets are a further generalization of distributive lattices, eliminating also the lattice requirement: an independence poset that is a lattice is always a trim lattice, and every trim lattice is the independence poset for a unique (up to isomorphism) acyclic directed graph $G$. We characterize when an independence poset is a lattice with a graph-theoretic condition on $G$. We generalize the definition of rowmotion from distributive lattices to independence posets, and we show it can be computed in three different ways. We also relate our constructions to torsion classes, semibricks, and 2-simpleminded collections arising in the representation theory of certain acyclic finite-dimensional algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.