Abstract
We introduce a concept of independence entropy for symbolic dynamical systems. This notion of entropy measures the extent to which one can freely insert symbols in positions without violating the constraint defined by the shift space. We show that for a certain class of one-dimensional shift spaces X, the independence entropy coincides with the limiting, as d tends to infinity, topological entropy of the dimensional shift defined by imposing the constraints of X in each of the d cardinal directions. This is of interest because for these shift spaces independence entropy is easy to compute. Thus, while in these cases, the topological entropy of the d-dimensional shift (d?2) is difficult to compute, the limiting topological entropy is easy to compute. In some cases, we also compute the rate of convergence of the sequence of d-dimensional entropies. This work generalizes earlier work on constrained systems with unconstrained positions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.