Abstract

An optimized and large scale adaptable synthesis of the ruthenium phenylindenylidene complex 3 is described which employs commercially available diphenyl propargyl alcohol 5 as a stable and convenient carbene source. Previous ambiguities as to the actual structure of the complex have been ruled out by a full analysis of its NMR spectra. A series of applications to ring closing metathesis (RCM) reactions shows that complex 3 is as good as or even superior to the classical Grubbs carbene 1 in terms of yield, reaction rate, and tolerance towards polar functional groups. Complex 3 turns out to be the catalyst of choice for the synthesis of the enantiopure core segment 77 of the marine alkaloid nakadomarin A 60 comprising the ADE rings of this target. Together with a series of other examples, this particular application illustrates that catalyst 3 is particularly well suited for the cyclization of medium-sized rings by RCM. Other key steps en route to nakadomarin A are a highly selective intramolecular Michael addition setting the quaternary center at the juncture of the A and D rings and a Takai-Nozaki olefination of aldehyde 73 with CH2I2, Ti(OiPr)4 and activated zinc dust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.