Abstract

AbstractThe mechanism by which deformation is transferred across grain boundaries and ways in which boundaries of different misorientations impact this process has been studied using indentation testing. This information could be useful in designing texture of nanocrystalline materials to maximize their mechanical properties for specific applications. Atomic force microscopy (AFM) and orientation imaging microscopy (OIM) has been combined to identify slip systems activated around indentations. When indentations are placed near grain boundaries, slip steps can be imaged on both sides of the boundary and the associated slip systems of each grain can be determined. Dislocation pile ups have been observed around indentations near boundaries which do not share a common slip direction with the active slip planes of either grain, and slip steps have been seen to traverse boundaries when these shared slip directions are present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call