Abstract
Magnesia doped multiwalled carbon nanotube (CNT)/α-alumina nanocomposites have been fabricated by spark plasma sintering at 1500°C under 50 MPa in argon. Owing to combined grain refining effect of nanotube and magnesia, nanocomposites possessed smaller matrix grains and extensively lower matrix crystallites than pure alumina. Thermal expansion mismatch between matrix and filler rendered up to four times higher compressive lattice microstrain to the nanocomposites over pure alumina. Despite very low CNT loading (e.g. 0·13 wt-%), nanocomposites offered considerably higher hardness (as high as 24·42 GPa), negligible indentation size effect (Meyer exponent = 1·906 − 1·941) and enhanced elastic response over pure alumina. Up to 0·27 wt-% nanotube loading, much higher wear resistance was observed for the nanocomposites over pure alumina. The presence of uniformly dispersed and structurally intact nanotubes coupled with lower matrix grains and crystallites having compressive lattice strain were the key factors behind achieving such improved mechanical properties of the present nanocomposites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.