Abstract
The stress distribution produced by the identation of a penny-shaped crack by an oblate smooth spheroidal rigid inclusion in a transversely isotropic medium is investigated using the method of Hankel transforms. This three-part mixed boundary value problem is solved using the techniques of triple integral equations. The normal contact stress between the crack surface and the indenter is written as the product of the associated half-space contact stress and a nondimensional crack-effect correction function. An exact expression for the stress-intensity is obtained as the product of a dimensional quantity and a nondimensional function. The curves for these nondimensional functions are presented and used to determine the values of the normalized stress-intensity factor and the normalized maximum contact stress. The stress-intensity factor is shown to be dependent on the material constants and increasing with increasing indentation. The stress-intensity factor also increases if the radius of curvature of the indenter surface increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.