Abstract

This study characterized the regional indentation mechanics and native collagen content in cartilaginous endplates (CEPs) from the porcine cervical spine, young human lumbar spine, and aged human lumbar spine. Seventeen endplates were included in this study: six porcine cervical, nine young human lumbar, and two aged human lumbar. Width and depth measurements were obtained using a digital caliper and used to size-normalize and identify the central, anterior, posterior, and lateral regions. Regional microindentation tests were performed using a serial robot, where surface locations were loaded/unloaded at 0.1 mm/s and held at a constant 10 N force for 30 s. Loading stiffness and creep displacement were obtained from force-displacement data. Immunofluorescence staining for type I and type II collagen was subsequently performed on sagittal sections of all endplate regions. 255 images were obtained from which fluorescence intensity, sub-surface void area, and cartilage thickness were measured. CEPs from the young human lumbar spine were, on average, 27% more compliant, 0.891 mm thicker, had a lower fluorescence intensity for native collagen proteins within the cartilage (−58%) and subchondral bone (−24%), and had a sub-surface void area that was 19.7 times greater than porcine cervical CEPs. Compared to aged human lumbar CEPs, young human lumbar CEPs were 57% stiffer, 0.568 mm thicker, had a higher fluorescence intensity for native collagen proteins within the cartilage (+30%) and subchondral bone (+46%), and had a sub-surface void area that was 10.6 times smaller. Although not a perfect mechanical and structural surrogate, porcine cervical CEPs provided initial conditions that may be more representative of the young and healthy human lumbar spine compared to aged human cadaveric specimens. The indentation properties presented may have further applications to finite element models of the human lumbar spine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.