Abstract
We studied the effect of local plastic deformation on the thermal stability and solid-state dewetting of thin homogeneous Au(Fe) films deposited on sapphire substrates. The films with ordered square arrays of indents produced by nanoindentation were annealed at the temperature of 700°C in a forming gas atmosphere. The behavior of the film in the region of shallow indents (reaching a depth up to one half of the film thickness) was very different from the one in the region of deep indents (with depths greater than one half of the film thickness). In the first case, the grain growth in indented and unperturbed regions of the film proceeded quite similarly, and nearly complete healing of the indents was observed. In the latter case, a recrystallization process in the vicinity of the indents resulted in the formation of small new grains with misorientation angles that were not present in the as-deposited film. The thermal grooving along the corresponding new high-energy grain boundaries caused an increase of the depth of the indents and the formation of the dewetting holes. The morphology of these holes and their size were different compared to the holes formed randomly in the unperturbed regions of the same films. In particular, the interaction between the individual indents of an array led to the preferential formation of holes at the periphery of the arrays. These findings shed a new light on the process of nucleation of the solid-state dewetting in thin films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.