Abstract

AbstractContact damage in materials is critical in engineering applications because it influences mechanical resistance, such as wear, erosion, and impact failure. Indentation tests were performed using a tungsten carbide ball indenter (Hertzian contact) on the surfaces of glass–ceramics containing hexagonal CaAl2Si2O8 or mica crystals (fluorophlogopite), both of which have a layered structure. The stress–strain relation and the permanent deformation on the surface, as well as the observation of the microcrack zone by X‐ray computed tomography using synchrotron radiation, revealed that the glass–ceramic with hexagonal CaAl2Si2O8 showed ductility similar to the quasi‐plastic behavior previously observed in the mica glass–ceramic. The yield stresses of the glass–ceramics were estimated from the stress deviating from the stress–strain relation assuming complete elastic response between the ball and the sample. The ratio of the yield stress to Young modulus (Y/E) of the glass–ceramic with hexagonal CaAl2Si2O8 was determined to be higher than that of the mica glass–ceramic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.