Abstract
We study pneumatically inflated membranes indented by rigid indenters of different sizes and shapes. When the volume of the inflated membrane is beyond a critical value, a symmetric deformation mode becomes unstable and the system follows a path of asymmetric deformation. This bifurcation is analysed analytically for a two-dimensional membrane with either a line or plane indenter for which the stable deformation path is determined by computing the total system potential energy of different configurations. An axisymmetric membrane with indenters of different shapes and sizes is further investigated numerically. In this case, a cylindrical indenter can always trigger bifurcation while a small spherical indenter tends to be encapsulated rather than induce an asymmetric deformation mode. This result suggests that the observed bifurcation behaviour can be actively tuned and even triggered selectively by tuning indenter shape and size. We also demonstrate the effects of friction and biased bifurcation analytically through the example of a two-dimensional membrane with a line indenter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.