Abstract

AbstractThis paper is concerned with the numerical solution of a symmetric indefinite system which is a generalization of the Karush–Kuhn–Tucker system. Following the recent approach of Lukšan and Vlček, we propose to solve this system by a preconditioned conjugate gradient (PCG) algorithm and we devise two indefinite preconditioners with good theoretical properties. In particular, for one of these preconditioners, the finite termination property of the PCG method is stated. The PCG method combined with a parallel version of these preconditioners is used as inner solver within an inexact Interior‐Point (IP) method for the solution of large and sparse quadratic programs. The numerical results obtained by a parallel code implementing the IP method on distributed memory multiprocessor systems enable us to confirm the effectiveness of the proposed approach for problems with special structure in the constraint matrix and in the objective function. Copyright © 2002 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.