Abstract

We study the spectrum of regular and singular Sturm–Liouville problems with real-valued coefficients and a weight function that changes sign. The self-adjoint boundary conditions may be regular or singular, separated or coupled. Sufficient conditions are found for (i) the spectrum to be real and unbounded below as well as above and (ii) the essential spectrum to be empty. Also found is an upper bound for the number of non-real eigenvalues. These results are achieved by studying the interplay between the indefinite problems (with weight function which changes sign) and the corresponding definite problems. Our approach relies heavily on operator theory of Krein space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.