Abstract

Recent advances in controlling the optical phase at the sub-wavelength scale by meta-structures offer unprecedented possibilities in the beam engineering, holograms, and even invisible cloaks. In despite of developments of plasmonic beam engineering for definite beams, here, we proposed a new holographic strategy by in-plane diffraction process to access indefinite plasmonic beams, where a counterintuitive oscillating beam was achieved at a free metal surface that is against the common recognition of light traveling. Beyond the conventional hologram, our approach emphasizes on the phase correlation on the target, and casts an in-depth insight into the beam formation as a kind of long depth-of-field object. Moreover, in contrast to previous plasmonic holography with space light as references, our approach is totally fulfilled in a planar dimension that offers a thoroughly compact manipulation of the plasmonic near-field and suggests new possibilities in nanophotonic designs.

Highlights

  • Recent advances in controlling the optical phase at the sub-wavelength scale by meta-structures offer unprecedented possibilities in the beam engineering, holograms, and even invisible cloaks

  • In despite of developments of plasmonic beam engineering for definite beams, here, we proposed a new holographic strategy by in-plane diffraction process to access indefinite plasmonic beams, where a counterintuitive oscillating beam was achieved at a free metal surface that is against the common recognition of light traveling

  • Our approach emphasizes on the phase correlation on the target, and casts an in-depth insight into the beam formation as a kind of long depth-of-field object

Read more

Summary

OPEN Indefinite Plasmonic Beam

These novel beams have even been realized in the surface plasmon polaritons (SPP)-a bounded electromagnetic wave with strong field confinement at the metal surface, which enables people to manipulate the light at sub-wavelength scale in unconventional ways[5,6,7,8,9] Among these progresses, the phase design was a key point, and the amplitude modulation was considered more recently[10], which are consistent with the principle of optical holography. Our research deepens the understanding of plasmonic beam formation in a holographic perspective, and would enrich people more possibilities in handling the optical field in holographic display, optical trapping, etc

Results
Methods
Author Contributions
Additional Information

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.