Abstract

Quantum field theory of Einstein's general relativity is formulated in the indefinite-metric Hilbert space in such a way that asymptotic fields are manifestly Lorentz covariant and the physical S-matrix is unitary. The general coordinate transformation is transcribed into a q-number transformation, called the BRS transformation. Its abstract definition is presented on the basis of the BRS transformation for the Yang-Mills theory. The BRS transformation for general relativity is then explicitly constructed. The gauge-fixing Lagrangian density and the Faddeev-Popov one are introduced in such a way that their sum behaves like a scalar density under the BRS transformation. One can then proceed in the same way as in the Kugo-Ojima formalism of the Yang-Mills theory to establish the unitarity of the physical S-matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.