Abstract

We present a definition of indefinite Kasparov modules, a generalisation of unbounded Kasparov modules modelling non-symmetric and non-elliptic (e.g. hyperbolic) operators. Our main theorem shows that to each indefinite Kasparov module we can associate a pair of (genuine) Kasparov modules, and that this process is reversible. We present three examples of our framework: the Dirac operator on a pseudo-Riemannian spin manifold (i.e. a manifold with an indefinite metric), the harmonic oscillator, and the construction via the Kasparov product of an indefinite spectral triple from a family of spectral triples. This last construction corresponds to a foliation of a globally hyperbolic spacetime by spacelike hypersurfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.