Abstract
ABSTRACTA method given recently for deriving indefinite integrals of special functions which satisfy homogeneous second-order linear differential equations has been extended to include functions which obey inhomogeneous equations. The extended method has been applied to derive indefinite integrals for the Lommel functions, which obey an inhomogeneous Bessel equation. The method allows integrals to be derived for the inhomogeneous equation in a manner which closely parallels the homogeneous case, and a number of new Lommel integrals are derived which have well-known Bessel analogues. Results will be presented separately for other special functions which obey inhomogeneous second-order linear equations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.