Abstract

The authors give a discription of the stable categories of selfinjective algebras of finite representation type over an algebraically closed field, which admits indecomposable Calabi-Yau obdjects. For selfinjective algebras with such properties, the ones whose stable categories are not Calabi-Yau are determined. For the remaining ones, i.e., those selfinjective algebras whose stable categories are actually Calabi-Yau, the difference between the Calabi-Yau dimensions of the indecomposable Calabi-Yau objects and the Calabi-Yau dimensions of the stable categories is described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.