Abstract
Two-dimensional thermographic particle image velocimetry (T-PIV) is presented for the in situ measurement in optically accessible internal combustion (IC) engines. Temperature and velocity measurements are combined using thermographic phosphor particles as tracers for PIV. For three commercially available phosphors (BAM:Eu2+, ZnO, and ZnO:Zn), temperature sensitivity, luminescence intensity at high temperatures and laser-fluence dependence were evaluated for phosphor-coated surfaces in a high-temperature cell. ZnO:Zn was identified as the best-suited candidate for engine in-cylinder measurements and further analyzed in the aerosolized state at temperatures up to 775 K to generate calibration data required for signal quantification in engine experiments. T-PIV was successfully applied in the IC engine to simultaneously obtain instantaneous two-dimensional velocity and temperature fields using the intensity-ratio method. Despite a measurement uncertainty (±1σ basis) of only 3.7 K at 317 K (1.2%) to 24.4 K (4.2%) at 575 K, this technique suffers from low signal intensities due to thermal quenching at increasing temperatures, which leads to reduced accuracy as the piston approaches top dead center. Thermographic measurements were successful to visualize local temperature changes due to evaporative cooling after fuel injection. The measured mean gas temperatures agreed well with zero-dimensional simulations that use additional wall-temperature measurements from thermographic phosphor measurements based on the lifetime method as input for heat transfer calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.