Abstract

Advances in primary and stem cell derived neuronal cell culture techniques and abundance of available neuronal cell types have enabled in vitro neuroscience as a substantial approach to model in vivo neuronal networks. Survival of the cultured neurons is inevitably dependent on the cell culture incubators to provide stable temperature and humidity and to supply required CO2 levels for controlling the pH of culture medium. Therefore, imaging and electrophysiology recordings outside of the incubator are often limited to the short-term experimental sessions. This restricts our understanding of physiological events to the short snapshots of recorded data while the major part of temporal data is neglected. Multiple custom-made and commercially available platforms like integrated on-stage incubators have been designed to enable long-term microscopy. Nevertheless, long-term high-spatiotemporal electrophysiology recordings from developing neuronal networks needs to be addressed. In the present work an incubator-independent polydimethylsiloxane-based double-wall perfusion chamber was designed and integrated with multi-electrode arrays (MEAs) electrophysiology and compartmentalized microfluidic device to continuously record from engineered neuronal networks at sub-cellular resolution. Cell culture media underwent iterations of conditioning to the ambient CO2 and adjusting its pH to physiological ranges to retain a stable pH for weeks outside of the incubator. Double-wall perfusion chamber and an integrated air bubble trapper reduced media evaporation and osmolality drifts of the conditioned media for two weeks. Aligned microchannel-microfluidic device on MEA electrodes allowed neurite growth on top of the planar electrodes and amplified their extracellular activity. This enabled continuous sub-cellular resolution imaging and electrophysiology recordings from developing networks and their growing neurites. The on-chip versatile and self-contained system provides long-term, continuous and high spatiotemporal access to the network data and offers a robust in vitro platform with many potentials to be applied on advanced cell culture systems including organ-on-chip and organoid models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call