Abstract
BackgroundMost severe, critical, or mortal COVID-19 cases often had a relatively stable period before their status worsened. We developed a deterioration risk model of COVID-19 (DRM-COVID-19) to predict exacerbation risk and optimize disease management on admission.MethodWe conducted a multicenter retrospective cohort study with 239 confirmed symptomatic COVID-19 patients. A combination of the least absolute shrinkage and selection operator (LASSO), change-in-estimate (CIE) screened out independent risk factors for the multivariate logistic regression model (DRM-COVID-19) from 44 variables, including epidemiological, demographic, clinical, and lung CT features. The compound study endpoint was progression to severe, critical, or mortal status. Additionally, the model's performance was evaluated for discrimination, accuracy, calibration, and clinical utility, through internal validation using bootstrap resampling (1000 times). We used a nomogram and a network platform for model visualization.ResultsIn the cohort study, 62 cases reached the compound endpoint, including 42 severe, 18 critical, and two mortal cases. DRM-COVID-19 included six factors: dyspnea [odds ratio (OR) 4.89;confidence interval (95% CI) 1.53–15.80], incubation period (OR 0.83; 95% CI 0.68–0.99), number of comorbidities (OR 1.76; 95% CI 1.03–3.05), D-dimer (OR 7.05; 95% CI, 1.35–45.7), C-reactive protein (OR 1.06; 95% CI 1.02–1.1), and semi-quantitative CT score (OR 1.50; 95% CI 1.27–1.82). The model showed good fitting (Hosmer–Lemeshow goodness, X2(8) = 7.0194, P = 0.53), high discrimination (the area under the receiver operating characteristic curve, AUROC, 0.971; 95% CI, 0.949–0.992), precision (Brier score = 0.051) as well as excellent calibration and clinical benefits. The precision-recall (PR) curve showed excellent classification performance of the model (AUCPR = 0.934). We prepared a nomogram and a freely available online prediction platform (https://deterioration-risk-model-of-covid-19.shinyapps.io/DRMapp/).ConclusionWe developed a predictive model, which includes the including incubation period along with clinical and lung CT features. The model presented satisfactory prediction and discrimination performance for COVID-19 patients who might progress from mild or moderate to severe or critical on admission, improving the clinical prognosis and optimizing the medical resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.