Abstract

Many west coastal and northern Norwegian rivers run through deep, confined valleys with permeable layers of glacial and alluvial deposits. Groundwater flows through these permeable layers and enter lakes and rivers as underwater seepage and springs. Groundwater inflow to inland Norwegian rivers may constitute 40–100% of total water discharge during low flow periods in late summer and winter. Juvenile salmonids may take advantage of groundwater upwellings and actively seek out such patches. In regulated rivers groundwater influx may create refuges during low flow or hydropeaking episodes. The importance of groundwater for salmon redd site selection and egg survival is also clear, although less known and documented in regulated rivers. Eggs of Atlantic salmon ( Salmo salar ) are deposited in redds in river bed gravels lacking fine sediments and with high oxygen levels. Egg development is therefore dependent on the interaction of a number of environmental factors such as groundwater influx, oxygen and temperature. Atlantic salmon in the regulated River Suldalslågen, Western Norway, spawn relatively late compared to other Norwegian rivers, with a peak in early January. Newly emerged fry are found from the end of May to the beginning of June, i.e. “swim up” one month earlier than expected using models for egg and alevin development and river water temperatures. The most plausible explanation is that groundwater has a higher and more stable temperature than surface river water. In field experiments, fertilized salmon eggs were placed in boxes close to natural spawning redds in the river bed at sites influenced and those not influenced by groundwater. A difference of up to 40 days in 50% hatching was found, and “swim up” occurred at the end of May in boxes influenced by groundwater. Preliminary studies have revealed that groundwater also plays an important role in survival of salmon eggs in the River Suldalslågen when dewatered in winter. Eggs placed in boxes in groundwater seepage areas during winter in the dewatered river bed survived even when covered by ice and snow. The survival from fertilization until 30 April, one month before hatching, was 91%, the same survival as found for eggs placed in boxes in the wetted river bed. However, mortality from fertilization to hatching was higher compared to the eggs placed in wetted river bed, 57 and 91% respectively. Groundwater creates a horizontal and vertical mosaic of temperatures in spawning redd areas leading to potentially greater variation in spawning sites, time of hatching and “swim up”. This is likely to increase egg survival during low flow periods in regulated rivers. In conclusion, the interaction between groundwater and surface river water should therefore be considered when managing fish populations in regulated rivers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call