Abstract

The presence of dislocations significantly modifies the mechanical properties of crystalline solids. Severe plastic deformation (SPD) and the most used SPD process – the Equal Channel Angular Pressing (ECAP), affect the multiplication and localized accumulation of dislocations. This research is related to the observation of dislocation pile-up and significant reduction of the crystalline grain size caused by severe deformations in the ECAP process of the widely used aluminium material (Al 99.5%). Because of its lightweight, the application of Al 99.5 % can pose a challenge for the aviation and space industry, especially since its mechanical properties limit its application. Improving these mechanical properties can extend its applicability in cases of demanding constructions as well as influence the final product cost. As a confirmation of SPD in-fluence on mechanical properties, material hardness has been examined and described. Dislocation monitoring is enabled using the light and electron microscopy and AFM (Atomic Force Microscope) device. A numerical simulation of the Equal Channel Angular Pressing process using the ABAQUS software package determined the representative area of the most severe deformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call