Abstract
The space of Herglotz wave functions in R2 consists of all the solutions of the Helmholtz equation that can be represented as the Fourier transform in R2 of a measure supported in the circle and with density in L2(S1). This space has a structure of a Hilbert space with reproducing kernel. The purpose of this article is to study Toeplitz operators with nonnegative radial symbols, defined on this space. We study the symbols defining bounded and compact Toeplitz operators as well as the Toeplitz operators belonging to the Schatten classes sp.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Archives des Maladies du Coeur et des Vaisseaux - Pratique
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.