Abstract

Diabetic nephropathy (DN) accompanied by cardiac fibrosis (CF) increases the mortality rate among people with diabetes. This study sought to explore the molecular mechanism of long non-coding RNA X inactive specific transcript (lncRNA XIST) in CF in DN mice. The animal model of DN was established by streptozocin (STZ). The levels of lncRNA XIST, microRNA (miR)-106a-5p, and RUNX family transcription factor 1 (RUNX1) were determined by quantitative real-time polymerase chain reaction (qRT-PCR), followed by biochemical analysis, hematoxylin & eosin and Masson staining, echocardiography, and quantification of collagen I, collagen III, α-smooth muscle actin (α-SMA), and transforming growth factor-β1 (TGF-β1) levels through qRT-PCR and Western blot assay. The subcellular localization of lncRNA XIST was analyzed by nuclear/cytoplasmic fractionation assay and the bindings of miR-106a-5p to lncRNA XIST and RUNX1 were confirmed by RNA immunoprecipitation and dual-luciferase assays. Functional rescue experiments were performed to validate the role of miR-106a-5p/RUNX1 in CF in DN mice. lncRNA XIST and RUNX1 were elevated while miR-106a-5p was decreased in STZ mice. lncRNA XIST inhibition reduced myocardial injury and collagen deposition, along with decreased levels of fasting blood glucose, serum creatinine, blood urea nitrogen, and urinary microalbumin, collagen I, collagen III, α-SMA, and TGF-β1. lncRNA XIST competitively bound to miR-106a-5p to promote RUNX1 transcription. miR-106a-5p downregulation or RUXN1 upregulation reversed the protective role of lncRNA XIST inhibition in STZ mice. lncRNA XIST competitively bound to miR-106a-5p to promote RUNX1 transcription, thereby aggravating renal dysfunction and CF in DN mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call