Abstract

Analogues of the incretins Glucagon-like peptide 1 (GLP-1) and Glucose-dependent insulinotropic peptide (GIP) have been developed to treat type 2 diabetes mellitus. They are protease resistant and have a longer biological half life than the native peptides. Some of these novel analogues can cross the blood-brain barrier, have neuroprotective effects, activate neuronal stem cells in the brain, and can improve cognition. The receptors for GIP and GLP-1 are expressed in neurons, and both GIP and GLP-1 are expressed and released as transmitters by neurons. GIP analogues such as DAla(2)GIP and GLP-1 analogues such as liraglutide enhance synaptic plasticity in the brain and also reverse the betaamyloid induced impairment of synaptic plasticity. In mouse models of Alzheimer's disease, GLP-1 analogues Val(8)GLP-1 and liraglutide prevent memory impairment and the block of synaptic plasticity in the brain. Since two GLP- 1 analogues exendin-4 (Exenatide, Byetta) and liraglutide (Victoza) are already on the market as treatments for Type 2 diabetes, and others are in late stage clinical trials, these drugs show promise as treatments for neurodegenerative diseases such as Alzheimer's disease. Currently, there are three patents covering native GLP-1 and different GLP-1 analogues and one patent for the use of GIP and different GIP analogues for the treatment of neurodegenerative diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call