Abstract

Structural decomposition methods, such as generalized hypertree decompositions, have been successfully used for solving constraint satisfaction problems (CSPs). As decompositions can be reused to solve CSPs with the same constraint scopes, investing resources in computing good decompositions is beneficial, even though the computation itself is hard. Unfortunately, current methods need to compute a completely new decomposition, even if the scopes change only slightly. In this article, we make the first steps toward solving the problem of updating the decomposition of a CSP P so that it becomes a valid decomposition of a new CSP P ' produced by some modification of P . Even though the problem is hard in theory, we propose and implement a framework for effectively updating generalized hypertree decompositions. The experimental evaluation of our algorithm strongly suggests practical applicability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.