Abstract
Update of the single- and multi-level association rules discovered in large databases is inherently costly. The straight forward approach of re-running the discovery algorithm on the entire updated database to re-discover the association rules is not cost-effective. An incremental algorithm FUP have been proposed for the update of discovered single-level association rules. In this study, we have shown that the incremental technique in FUP can be generalized to other data mining systems. An efficient algorithm MLUp has been proposed for the updating of discovered multi-level association rules. Our performance study shows that MLUp has a superior performance over the representative mining algorithm such as ML-T2 in updating discovered multi-level association rules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Artificial Intelligence Tools
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.