Abstract
This paper introduces incremental symmetry breaking constraints for graph search problems which are complete and compact. We show that these constraints can be computed incrementally: A symmetry breaking constraint for order n graphs can be extended to one for order n + 1 graphs. Moreover, these constraints induce a special property on their canonical solutions: An order n canonical graph contains a canonical subgraph on the first k vertices for every 1 ≤ k ≤ n. This facilitates a “generate and extend” paradigm for parallel graph search problem solving: To solve a graph search problem φ on order n graphs, first generate the canonical graphs of some order k < n. Then, compute canonical solutions for φ by extending, in parallel, each canonical order k graph together with suitable symmetry breaking constraints. The contribution is that the proposed symmetry breaking constraints enable us to extend the order k canonical graphs to order n canonical solutions. We demonstrate our approach through its application on two hard graph search problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.