Abstract
Support vector machines (SVMs) are known to result in a quadratic programming problem, that requires a large computational complexity. To reduce it, this paper considers, from the geometrical point of view, two incremental or iterative SVMs with homogeneous hyperplanes. One method is shown to produce the same solution as an SVM in batch mode with the linear complexity on average, utilizing the fact that only effective examples are necessary and sufficient for the solution. The other, which stores the set of support vectors instead of effective examples, is quantitatively shown to have a lower performance although implementation is rather easy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.