Abstract

Quasi brittle materials, such as un-reinforced masonry or concrete are difficult to analyse because often the traditional Newton–Raphson (N-R) procedure fails to converge. Many solutions have been proposed such as Sequentially Linear Analysis (SLA), but these may fail in case of non-proportional loading with a large prestress. In this paper a new method is proposed that is based on a combination of the Newton–Raphson method and Sequentially Linear Analysis. The method is incremental; each increment starts and ends with an equilibrium state. The solution search path follows damage cycles sequentially with secant stiffness. The proposed method is demonstrated to be robust and accurate. It has been tested on prestressed concrete beams. It can be naturally extended to other types of analyses (e.g. geometrically non-linear analysis and transient analysis) due to the incremental procedure. In addition, it is shown that high prestress values can transform the behaviour of a concrete beam from softening to hardening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.