Abstract

Existing algorithms of mining frequent XML query patterns (XQPs) employ a candidate generate-and-test strategy. They involve expensive candidate enumeration and costly tree-containment checking. Further, most of existing methods compute the frequencies of candidate query patterns from scratch periodically by checking the entire transaction database, which consists of XQPs transferred from user query logs. However, it is not straightforward to maintain such discovered frequent patterns in real XML databases as there may be frequent updates that may not only invalidate some existing frequent query patterns but also generate some new frequent query patterns. Therefore, a drawback of existing methods is that they are rather inefficient for the evolution of transaction databases. To address above-mentioned problems, this paper proposes an efficient algorithm ESPRIT to mine frequent XQPs without costly tree-containment checking. ESPRIT transforms XML queries into sequences using a one-to-one mapping technique and mines the frequent sequences to generate frequent XQPs. We propose two efficient incremental algorithms, ESPRIT-i and ESPRIT-i +, to incrementally mine frequent XQPs. We devise several novel optimization techniques of query rewriting, cache lookup, and cache replacement to improve the answerability and the hit rate of caching. We have implemented our algorithms and conducted a set of experimental studies on various datasets. The experimental results demonstrate that our algorithms achieve high efficiency and scalability and outperform state-of-the-art methods significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.