Abstract
Unit two-variable-per-inequality (UTVPI) constraints form one of the largest class of integer constraints that are polynomial time solvable (unless P = NP). There is considerable interest in their use for constraint solving, abstract interpretation, spatial database algorithms, and theorem proving. In this paper we develop new incremental algorithms for UTVPI constraint satisfaction and implication checking that require ℴ(m + n log n + p) time and ℴ(n + m + p) space to incrementally check satisfiability of m UTVPI constraints on n variables, and we check the implication of p UTVPI constraints. The algorithms can be straightforwardly extended to create nonincremental implication checking and generation of all (nonredundant) implied constraints, as well as generate minimal unsatisfiable subsets and minimal implicants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.