Abstract
Over the past few decades, much attention has been drawn to large-scale incremental data analysis, where researchers are faced with huge amounts of high-dimensional data acquired incrementally. In such a case, conventional algorithms that compute the result from scratch whenever a new sample comes are highly inefficient. To conquer this problem, we propose a new incremental algorithm incremental regularized least squares (IRLS) that incrementally computes the solution to the regularized least squares (RLS) problem with multiple columns on the right-hand side. More specifically, for an RLS problem with $c$ ($c>1$) columns on the right-hand side, we update its unique solution by solving an RLS problem with a single column on the right-hand side whenever a new sample arrives, instead of solving an RLS problem with $c$ columns on the right-hand side from scratch. As a direct application of IRLS, we consider the supervised dimensionality reduction of large-scale data and focus on linear discriminant analysis (...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.