Abstract

We propose an incremental algorithm to compute the proper orthogonal decomposition (POD) of simulation data for a partial differential equation. Specifically, we modify an incremental matrix SVD algorithm of Brand to accommodate data arising from Galerkin-type simulation methods for time dependent PDEs. The algorithm is applicable to data generated by many numerical methods for PDEs, including finite element and discontinuous Galerkin methods. The algorithm initializes and efficiently updates the dominant POD eigenvalues and modes during the time stepping in a PDE solver without storing the simulation data. We prove that the algorithm without truncation updates the POD exactly. We demonstrate the effectiveness of the algorithm using finite element computations for a 1D Burgers’ equation and a 2D Navier–Stokes problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.