Abstract

In a real-world setting, object instances from new classes can be continuously encountered by object detectors. When existing object detectors are applied to such scenarios, their performance on old classes deteriorates significantly. A few efforts have been reported to address this limitation, all of which apply variants of knowledge distillation to avoid catastrophic forgetting. We note that although distillation helps to retain previous learning, it obstructs fast adaptability to new tasks, which is a critical requirement for incremental learning. In this pursuit, we propose a meta-learning approach that learns to reshape model gradients, such that information across incremental tasks is optimally shared. This ensures a seamless information transfer via a meta-learned gradient preconditioning that minimizes forgetting and maximizes knowledge transfer. In comparison to existing meta-learning methods, our approach is task-agnostic, allows incremental addition of new-classes and scales to high-capacity models for object detection. We evaluate our approach on a variety of incremental learning settings defined on PASCAL-VOC and MS COCO datasets, where our approach performs favourably well against state-of-the-art methods. Code and trained models: https://github.com/JosephKJ/iOD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.