Abstract

The control of gas fractionation unit (GFU) in petroleum industry is very difficult due to multivariable characteristics and a large time delay. PID controllers are still applied in most industry processes. However, the traditional PID control has been proven not sufficient and capable for this particular petro-chemical process. In this work, an incremental multivariable predictive functional control (IMPFC) algorithm was proposed with less online computation, great precision and fast response. An incremental transfer function matrix model was set up through the step-response data, and predictive outputs were deduced with the theory of single-value optimization. The results show that the method can optimize the incremental control variable and reject the constraint of the incremental control variable with the positional predictive functional control algorithm, and thereby making the control variable smoother. The predictive output error and future set-point were approximated by a polynomial, which can overcome the problem under the model mismatch and make the predictive outputs track the reference trajectory. Then, the design of incremental multivariable predictive functional control was studied. Simulation and application results show that the proposed control strategy is effective and feasible to improve control performance and robustness of process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call