Abstract
Incremental mining of sequential patterns from data streams is one of the most challenging problems in mining data streams. However, previous work of mining sequential patterns from data streams is almost focused on mining of patterns from stream of item-sequences, not stream of itemset-sequences. In this paper, we propose an efficient single-pass algorithm, called IncSPAM, to maintain the set of sequential patterns from itemset-sequence streams with a transaction-sensitive sliding window. An effective bit-sequence representation of items is used in the proposed algorithm to reduce the time and memory needed to slide the windows. Experiments show that the proposed IncSPAM algorithm is efficient for mining sequential patterns over data streams
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.