Abstract
Incremental load is an important factor for successful data warehousing. Lack of standardized incremental refresh methodologies can lead to poor analytical results, which can be unacceptable to an organization’s analytical community. Successful data warehouse implementation depends on consistent metadata as well as incremental data load techniques. If consistent load timestamps are maintained and efficient transformation algorithms are used, it is possible to refresh databases with complete accuracy and with little or no manual checking. This paper proposes an Extract-Transform-Load (ETL) metadata model that archives load observation timestamps and other useful load parameters. The author also recommends algorithms and techniques for incremental refreshes that enable table loading while ensuring data consistency, integrity, and improving load performance. In addition to significantly improving quality in incremental load techniques, these methods will save a substantial amount of data warehouse systems resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Intelligent Information Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.