Abstract

Dimensionality reduction methods have been successfully employed for face recognition. Among the various dimensionality reduction algorithms, linear (Fisher) discriminant analysis (LDA) is one of the popular supervised dimensionality reduction methods, and many LDA-based face recognition algorithms/systems have been reported in the last decade. However, the LDA-based face recognition systems suffer from the scalability problem. To overcome this limitation, an incremental approach is a natural solution. The main difficulty in developing the incremental LDA (ILDA) is to handle the inverse of the within-class scatter matrix. In this paper, based on the generalized singular value decomposition LDA (LDA/GSVD), we develop a new ILDA algorithm called GSVD-ILDA. Different from the existing techniques in which the new projection matrix is found in a restricted subspace, the proposed GSVD-ILDA determines the projection matrix in full space. Extensive experiments are performed to compare the proposed GSVD-ILDA with the LDA/GSVD as well as the existing ILDA methods using the face recognition technology face database and the Carneggie Mellon University Pose, Illumination, and Expression face database. Experimental results show that the proposed GSVD-ILDA algorithm gives the same performance as the LDA/GSVD with much smaller computational complexity. The experimental results also show that the proposed GSVD-ILDA gives better classification performance than the other recently proposed ILDA algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.