Abstract

It has always been a challenging task to develop a fast and an efficient incremental linear discriminant analysis (ILDA) algorithm. For this purpose, we conduct a new study for linear discriminant analysis (LDA) in this paper and develop a new ILDA algorithm. We propose a new batch LDA algorithm called LDA/QR. LDA/QR is a simple and fast LDA algorithm, which is obtained by computing the economic QR factorization of the data matrix followed by solving a lower triangular linear system. The relationship between LDA/QR and uncorrelated LDA (ULDA) is also revealed. Based on LDA/QR, we develop a new incremental LDA algorithm called ILDA/QR. The main features of our ILDA/QR include that: 1) it can easily handle the update from one new sample or a chunk of new samples; 2) it has efficient computational complexity and space complexity; and 3) it is very fast and always achieves competitive classification accuracy compared with ULDA algorithm and existing ILDA algorithms. Numerical experiments based on some real-world data sets demonstrate that our ILDA/QR is very efficient and competitive with the state-of-the-art ILDA algorithms in terms of classification accuracy, computational complexity, and space complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.