Abstract
Every second, thousands of credit or debit card transactions are processed in financial institutions. This extensive amount of data and its sequential nature make the problem of fraud detection particularly challenging. Most analytical strategies used in production are still based on batch learning, which is inadequate for two reasons: Models quickly become outdated and require sensitive data storage. The evolving nature of bank fraud enshrines the importance of having up-to-date models, and sensitive data retention makes companies vulnerable to infringements of the European General Data Protection Regulation. For these reasons, evaluating incremental learning strategies is recommended. This paper designs and evaluates incremental learning solutions for real-world fraud detection systems. The aim is to demonstrate the competitiveness of incremental learning over conventional batch approaches and, consequently, improve its accuracy employing ensemble learning, diversity and transfer learning. An experimental analysis is conducted on a full-scale case study including five months of e-commerce transactions and made available by our industry partner, Worldline.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Data Science and Analytics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.