Abstract

The traditional view on visual processing emphasizes a hierarchy: local line segments are first linked into global contours, which in turn are assembled into more complex forms. Distinct from this bottom-up viewpoint, here we provide evidence for a theoretical framework whereby objects and their parts are processed almost concurrently in a bidirectional cortico-cortical loop. By simultaneous recordings from V1 and V4 in awake monkeys, we found that information about global contours in a cluttered background emerged initially in V4, started ∼40 ms later in V1, and continued to develop in parallel in both areas. Detailed analysis of neuronal response properties implicated contour integration to emerge from both bottom-up and reentrant processes. Our results point to an incremental integration mechanism: feedforward assembling accompanied by feedback disambiguating to define and enhance the global contours and to suppress background noise. The consequence is a parallel accumulation of contour information over multiple cortical areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call